Stat 221

Sergiy designed and taught as lecturer Statistical Computing and Visualization (Stat 221), a graduate class offered by Harvard Statistics Department in Spring 2013.

Stat 221 is a graduate class on analyzing data without losing scientific rigor, and communicating your work. Topics span the full cycle of a data-driven project including project setup, design, implementation, and creating interactive user experiences to communicate ideas and results. We covered current theory and philosophy of building models for data, computational methods, and tools such as d3js, parallel computing with MPI, R.

All lecture slides are now available online:

  • Lecture 1, Course Introduction
  • Lecture 2, Introduction to Visualization, Modeling, and Computing (VMC)
  • Lecture 3, Intro VMC - Modeling and Computing
  • Lecture 4 - Guest Lecture by Rachel Schutt, Introduction to Data Science
  • Lecture 5, A More Rigorous Look at Visualization
  • Lecture 6, Statistical Models and Likelihood
  • Lecture 7, Likelihood Principle, MLE Foundations, Odyssey
  • Lecture 8, Stochastic Optimization for Inference, Odyssey
  • Lecture 9, Modeling with Missing Data/Latent Variables
  • Lecture 10, Expectation-Maximization Algorithm (EM)
  • Lecture 11, EM for HMMs, Properties of EM
  • Lecture 12, EM variants, Data Augmentation
  • Lecture 13, Likelihood + Prior = Posterior (Bayesian Inference)
  • Lecture 14, Missing Data and MCMC
  • Lecture 15, Hamiltonian Monte Carlo (HMC)
  • Lecture 16, Decision Theory and Statistical Inference
  • Lecture 17, Parallel Statistical Computing
  • Lecture 18, Parallel Tempering
  • Lecture 19, Message Passing Interface (MPI) for Parallel Tempering
  • Lecture 20, Equi-Energy MCMC Sampler
  • Lecture 21, Approximate Methods: Variational Inference
  • Lecture 22, Variational EM, Monte Carlo EM
  • Lecture 23, Hacker Level: Data Augmentation
  • Lecture 24, Interactive Experiences and Us
  • Lecture 25, The Final Lecture: Summing It Up

Students in the course were exposed to substantial theory, created interactive visualization, defined open problems in current research, structured our thinking about interactive user experiences, and worked on course final projects with a roster of first-class course partners.


In the past, Sergiy taught the following classes at Harvard Statistics as a Teaching Fellow: Stat 104 (Introduction to Quantitative Methods for Economics), Stat 107 (Introduction to Business and Financial Statistics), Stat 100 (Introduction to Quantitative Methods for the Social Sciences and Humanities), Stat 110 (Intro Probability), and Stat 111 (Intro Theoretical Statistics).